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Supplementary Information Text 

Supplementary Method 

Colony forming unit (CFU) assay 

For Fig. 1, CFU assays were performed to determine a time-dependent killing curve of a 

bacterial population exposed to ampicillin. Cells were cultured and starved as described in the 

Method section. On the third day of starvation (67.7 - 70.5 hours), cells were transferred to a 

fresh pre-warmed rich (LB) medium with 100 µg/ml ampicillin (time zero), and incubated at 

37 °C. At different time points t, a fixed volume was spread on LB agar plates (100 × 15 mm 

Petri dish) containing no ampicillin after appropriate serial dilutions. The plates were then 

incubated at 37 °C overnight. Next morning, we counted visible colonies (which varied between 

30 – 300) on the LB agar plates and determined the CFUs per milliliter. For each time point t, at 

least two biological replicates were performed, and their mean (data points) and standard 

deviation (error bars) were reported in Fig.1. Within each biological replicate, at least four 

technical replicates were performed, and their average was used. 

Single-cell level observation of lag time using a microscope 

Our microscope configuration was described in the Method section. For Fig. 2, on the third day 

of starvation (70.1 - 73.7 hours, as described in the Method section), a 5 µl aliquot of cells was 

spread onto a pre-warmed 35 mm glass-bottom Petri dish (InVitro Scientific). Then, a pre-

warmed LB agarose pad with an approximate volume of 2.4 ml containing ampicillin (100 µg/ml 

final concentration) was gently placed on top of the cells such that the pad covered the entire 

bottom surface of the dish. The dish was then sealed with parafilm to limit water evaporation and 

immediately moved to a pre-warmed (37 °C) microscope for time-lapse imaging. An oil 

immersion 60 objective was used to acquire phase-contrast images of the cells.  



The lag time of individual cells (Fig. 2) was measured using a time-lapse microscopy. Cells were 

imaged at different time points, their size was calculated using MicrobeJ, and the duration for 

which a cell maintained its size was used to determine its lag time. To visualize a power law, we 

logarithmically binned the data shown in Fig. 2a, producing Fig. 2b. Briefly, defining the bottom 

of the lowest bin and the ratio of the widths of successive bins as xmin and a, the kth bin extends 

from xk–1 = xmin a
k–1 to xk = xmin a

k . Importantly, Fig. 2b represents probability distribution, and 

thus the number of observations made within each bin was normalized by the bin width. For 

triangles, xmin = 70 min and a = 2.  For rectangles, xmin = 140 min and a = 1.5.   

Single-cell level determination of time delay in ampicillin-killing of growing cells 

To determine the time delay (Supplementary Fig. 2), cell culture was first maintained in 

exponential growth phase for at least nine doublings until it reached OD600 = 0.2 - 0.3 in LB 

broth, and then a 4 µl aliquot was spread onto a pre-warmed 35 mm glass-bottom Petri dish 

(InVitro Scientific). Then, a pre-warmed LB agarose pad with an approximate volume of 2.4 ml 

containing ampicillin (100 µg/ml final concentration) was gently placed on top of the cells such 

that the pad covered the entire bottom surface of the dish. The dish was then sealed with parafilm 

to limit water evaporation and immediately moved to a pre-warmed microscope for time-lapse 

imaging at 37 °C. In this experiment, the LB agarose pad contained also propidium iodide (PI, 

Thermo-Fisher) at 4 µM of final concentration. An oil immersion 60 objective was used to 

acquire phase-contrast and red fluorescence images of the cells. Then, the distribution of time at 

which a cell got stained by PI or lost refractivity in its phase contrast image (i.e., lysed) 

(whichever comes first) was determined.  

We additionally confirmed that PI is a good indicator for cell death by ampicillin; when we 

incubated cells with ampicillin and PI for 80 mins and spread them on an LB agar plate 



containing no ampicillin, none of the PI stained (PI+) cells grew. A total number of ~25 PI+ 

ampicillin-affected cells were examined in five biological replicates. 

Determination of values of 0, k,  , A1 and A2   

Fig. 2a shows a semi-log plot of lag time probability distribution. Data below 105 min were 

fitted to a linear function, yielding k = 0.063 min-1 (R2 ~ 0.907). Fig. 2b shows a log-log plot. 

This dataset was fitted to a linear function, yielding  = –2.1 (R2 ~ 0.977). 0, A1 and A2 were 

determined using the following three equations. First, because the lag time probability 

distribution is continuous, 0
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which we empirically found to be 0.98 (from the data presented with triangles and squares in Fig. 

2a); thus 
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0.98kA e d
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   . Solving these three equations, we obtained 0 = 93 min, A1 = 0.062 

min-1 and A2 = 2.4 min1.1.  

Determination of these parameters by fitting the time-dependent killing curve 

The following ranges for the model parameters were explored using a custom-built MATLAB 

code; k (1/min) = [0.010, 0.200] with 0.001 increments,  = [-3.00, -1.51] with 0.01 increments, 

∆ (min) = [60, 200] with increments of one, and 0 (min) = [10, 270] with increments of one. For 

each set of parameters (k, , ∆, 0),  
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for A1 and A2. Using these values, we then computed the fraction of viable cells, g(t), and 

compared them with experimental values (time-dependent killing data). The best-fit parameter 

values are shown in Supplementary Table. 



Supplementary Dataset 

Below we provide the values for all our data. 

Data presented in Fig. 1: Data points are the arithmetic mean. The error bars represent the 

standard deviation of the values reported below for three biological replicate experiments.  

 

Biological Replicate #1 Biological Replicate #2 Biological Replicate #3 

Time (min) NCFU Time (min) NCFU Time (min) NCFU 

25 1.00 × 100 26 1.00 × 100 23 1.00 × 100 

56 1.19 × 100 55 9.37 × 10-1 53 1.07 × 100 

84 1.13 × 100 85 6.62 × 10-1 83 6.70 × 10-1 

113 3.08 × 10-1 114 2.83 × 10-1 112 2.32 × 10-1 

142 5.14 × 10-2 143 3.77 × 10-2 143 2.29 × 10-2 

212 2.09 × 10-2 217 1.06 × 10-2 213 7.88 × 10-3 

322 1.14 × 10-2 330 5.03 × 10-3 325 4.19 × 10-3 

447 8.37 × 10-3 447 3.01 × 10-3 N/A N/A 

539 6.66 × 10-3 541 2.25 × 10-3 N/A N/A 

650 5.04 × 10-3 652 1.64 × 10-3 657 1.23 × 10-3 

943 2.55 × 10-3 947 7.47× 10-4 N/A N/A 

 

  



Data presented in Fig. 2a. 

Here, the data obtained from three independent experiments were presented by three different 

symbols; circles, triangles and squares. For each independent experiment, we took time-lapse 

images of bacterial cells at various time points (T1, T2, …, Ti, Ti+1…) and counted the number of 

bacterial cells that resumed growth (Ni) between Ti and Ti-1. In Fig. 2, lag time,, represents the 

middle points of the bins, (Ti + Ti-1)/2. Probability distribution f () represents probability divided 

by the bin width Ni /(Ni)/(Ti - Ti-1). 

 

Circles Triangles Squares 

Imaging 

time point, 

Ti (min) 

Number of 

observations, 

Ni 

Imaging 

time point, 

Ti (min) 

Number of 

observations, 

Ni 

Imaging 

time point, 

Ti (min) 

Number of 

observations, 

Ni 

30 462 69 1372 120 10077 

60 81 84 19 140 16 

90 6 105 9 200 66 

120 2 124 8 260 39 

  144 1 320 19 

  164 2 380 9 

  189 2 440 4 

  227 2 500 6 

  346 2 560 5 

  403 2 620 2 

  522 1 680 6 

  644 1 740 2 

  827 1 800 1 

  883 1 860 3 

  947 1 920 1 

  1188 1 980 3 



    1040 2 

    1160 2 

    1220 1 

 

Data presented in Fig. 2b. 

Logarithmic binning rules, as described in the Supplementary Method section, were applied to the 

data presented above for the triangles and squares in Fig. 2a.  

 

Triangles Squares 

Logarithmically 

binned time 

point (min) 

Number of 

observations 

Logarithmically 

binned time 

point (min) 

Number of 

observations 

70 1372 140 10093 

140 36 209 66 

280 7 313 39 

560 5 468 32 

1120 4 700 18 

2240 1 1047 10 

  1565 5 

 

 

 

 

  



Supplementary Figure 1. Early exponential decay of lag time distribution 

 

 

We observed an exponential decay in the early part of lag time probability distribution (Fig. 2). 

Previous population dynamic modeling studies often assumed that lag time distribution of 

bacterial cells exhibits an exponential decay 1,2. Other experimental studies investigated two or 

three orders of magnitude decrease of lag time distribution (the range comparable to that of our 

early part of distribution where we observed an exponential decay). Here, we re-plotted the data 

of these experimental studies and fit them with an exponential function, which shows that an 

exponential decay is a good approximation.  a. In our previous-published studies 3, E. coli cells 

were starved of carbon for eight hours, and then suspended in LB medium. Lag times of 

individual cells were determined by microscopy at 37 C. The red straight line in a semi-log 

scale indicates an exponential decay with R2 = ~ 0.917. Reprinted from ref. 3 (Sup. Fig. 13). b. In 



the study by Levin-Reisman et al. 4 (Fig. 1d), E. coli cells were starved and suspended in a 

complex medium. Lag times of individual cells were determined by microscopy at 32 C. The 

red straight line in a semi-log scale indicates an exponential decay with R2 = ~ 0.802. Reprinted 

by permission from ref. 4, Springer Nature: Nature Methods, copyright (2010). c. In the study by 

Kutalik et al. 5 (Fig. 4), Listeria innocua cells were starved and suspended in complex medium. 

The time to the first division of individual cells was determined by microscopy at ambient 

temperature. The red straight line in a semi-log scale indicates an exponential decay with R2 = ~ 

0.802. Reprinted from ref. 5, Copyright (2005), with permission from Elsevier. d. In the study by 

Francois et al. 6 (Fig. 2),  Listeria monocytogenes cells were starved and suspended in complex 

medium. The time to the first division of individual cells was determined by optical density 

measurements using microtiter plates at 30 C. The red straight line in a semi-log scale indicates 

an exponential decay with R2 = 0.775. Reprinted from ref. 6, Copyright (2005), with permission 

from Elsevier. 

 

 

 

 

 

 

 

 



Supplementary Figure 2. Time delay of ampicillin killing 

 

 

 

 

As described in the main text, we evaluated the time of ampicillin killing by exposing growing 

cells to ampicillin (100 µg/ml final concentration) and tracking propidium iodide (PI)-staining or 

the loss of cell refractivity (whichever comes first). Here, we plotted the distribution of 

ampicillin killing time, which showed that on average, it takes ∆ = 102 mins for ampicillin to kill 

growing cells. The distribution was obtained from two biological repeats. ~ 200 cells were 

examined within each biological repeat. Average killing time varied by less than 7 % across the 

two biological repeats when separately analyzed. 

  



Supplementary Figure 3. Testing the effect of mutation on the time-dependent killing curve 

 
 

Cultures starved for long periods of time yield mutants, called the growth advantage in stationary 

phase (GASP). The appearance of GASP mutants is accompanied by an abrupt transition in the 

number of the colony-forming unit, NCFU; NCFU initially decreasing at a constant rate due to 

starvation reaches a plateau when GASP mutants appear. The timing of appearance of GASP 

mutants depends on the types of media used; for example, in Luria-Bertani (LB) media, they 

appear within several days of starvation 7, whereas they appear after ~ 30 days of starvation in 

minimal media 8. In our experiments, we used minimal media, and cells were starved for ~ 3 

days. Therefore, GASP mutants are unlikely to appear. Indeed, we did not observe such an 

abrupt transition in NCFU (i.e., from a rapid decrease to a plateau) during our experiment (the 

NCFU data are available in our previously-published article 3), which suggests that GASP mutants 

have not appeared during our experiments.  

 

In order to further ensure that our findings are not affected by mutation, we repeated the time-

dependent killing curve measurement by using cells collected at the end of the experiments. 

First, as described in the main text, we measured a time-kill curve of a population exposed to 
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ampicillin (solid triangles). We then collected cells at the end of the experiments and then 

repeated the entire experiments with the collected cells (open triangles). Their time-kill curves 

were very similar, which suggests that our observation was not affected by mutation. We note 

that the same approach was previously taken by others in order to provide evidence that 

persisters are not mutants 9,10.  

  



Supplementary Figure 4. Testing the effect of initial cell density on our observations 

 

 

Persisters are typically present at very low frequency. Therefore, to reliably characterize 

persisters, we used a high initial cell density and monitored the lag time of ~12,800 cells in our 

original experiment, finding that the lag time distribution exhibits a power-law decay. Here, we 

performed more experiments to test whether our observation is affected by the initial cell 

density. In the new experiments, we lowered the initial density by 10-fold and monitored the lag 

time of ~1,600 cells. As was observed in the original experiments with a high cell density, the 

majority of cells rejuvenated during the early exponential decay phase, i.e., before 0 (= 93 min). 

Only 33 cells rejuvenated after 0. Interestingly, despite the issue of low sample size, their lag 

time distribution (black diamonds in Supplementary Fig. 4a) was comparable to the original 



distribution with the high cell density (open square in Supplementary Fig. 4a, adopted from Fig. 

2) and exhibited a power-law decay with the exponent of -2 (Supplementary Fig. 4b). Thus, 

lowering the cell density by 10-fold had no obvious effects on the power-law decay of the lag 

time distribution.  

 

Additionally, we measured a time-dependent killing curve of a population exposed to ampicillin. 

In three different measurements, we lowered the initial density up to 100-fold and measured the 

viability of cells in the cultures (Supplementary Fig. 4c). In these experiments, low sample size 

remains a problem. For example, we could not measure points beyond 1,000 mins because the 

number of viable cells fell below the detection limit of plating. However, when we normalized 

the curves obtained with respect to their initial cell density, the normalized curves agreed with 

our original curve with the high initial cell density, exhibiting similar biphasic decays 

(Supplementary Fig. 4d). 

  

In conclusion, while our new experiments with low cell densities suffer from low statistics 

(which was expected given a very low frequency of persisters), the new data suggest that 

lowering cell density has no obvious effects on our findings.  

  



Supplementary Note 1: consideration of a finite population. 

In the mathematical analysis of the power-law in the main text, the integral over k had an infinite 

upper hand limit (Eq. 8), which implies an infinite population (which is not realistic). The 

finiteness of a population would cut off the range of the integral of k. Importantly, because time t 

is the reciprocal of k, this cut-off will set the temporal range for which the power-law holds. 

Below, we elaborated this point by using a detailed mathematical analysis. 

 

Initially, our original equation (Eq. 8) had an integral with infinite upper hand limit. If the 

integral has a finite upper limit (due to a finite population size), Eq. 8 would become  

 
max

0
( ) exp( )

k

N k k dk       . (Eq. S1) 

The term on the right can be described by 
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k kd
k k dk k dk

d
 


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and  

  
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0

1
exp( ) 1 exp( )

k

k dk k 


        .  (Eq. S3) 

If  kmax >> 1 or  >> 1/ kmax, maxexp( )k  in the right term of Eq. S3 is approximated to be zero. 

Thus, Eq. S1 becomes 
2

1
( )N 


  . 

Therefore, the aforementioned temporal range ( >> 1/ kmax) sets the lower temporal bound for 

which the power-law is valid. In our experiments, we observed that the power law begins at  

~100 mins, which suggests that kmax >> 1/ (100 mins).   

 



We can extend this analysis for the upper temporal bound of the power-law by including the 

lower hand limit of the integral in Eq. S1. With the lower hand limit, we have  

 
max

min

( ) exp( )
k

k
N k k dk       . (Eq. S4) 

The right term of Eq. S4 is 
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If  kmin << 1 but  kmax >> 1, i.e., 1/ kmax <<   << 1/ kmin, Eq. S6 becomes 
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k
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
    , and thus, 

2

1
( )N 


 . In our experiments, the power-law was observed up 

to nearly 2,000 mins, meaning kmin << 1/ (2,000 mins) 

 

In conclusion, the finiteness of a population will set the temporal range for which the power-law 

holds. 

 

Supplementary Note 2: consideration of a non-uniform distribution of k. 

In the main text, we assumed a uniform distribution of k to provide an intuitive explanation of 

the observed power-law decay with the exponent of 2. Here, we want to test whether this 

assumption is necessary to explain this power-law decay. We will consider a non-uniform 

distribution of k by including a weighting factor ( )h k . With this weighting factor, Eq. 8 in the 

main text becomes  



 
0

( ) ( ) exp( )N h k k k dk 


       . (Eq. S7) 

When k is uniformly distributed, ( )h k  is constant. To address the question whether this 

assumption is necessary, it would be convenient to consider ( )h k  that 1) changes from a uniform 

to non-uniform distribution as a parameter in the function is tuned and 2) is simple enough so 

that the analytical solution (Eq. S7) can be derived. One such function is ( ) exp( )h k a a k    . In 

the limit of a   0, ( )h k converges to a uniform distribution. As a  gets larger, the function 

becomes more steeply varing.  

 

With ( ) exp( )h k a a k    , the solution of Eq. S7 is 
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
 , (Eq. S8) 

which will converge to 
2

1
( )N 


  when a  . It means that if a  is small, we will observe a 

power-law decay with the exponent of 2 over a wide temporal range. As a  gets larger, the 

beginning part of the curve will deviate from, but the tail of the curve will exhibit a power-law 

decay with the exponent of 2. 

 

To ensure that this conclusion is not specific to an exponential distribution of k, we also 

considered a linear function, 
2

2
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a
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b
    . In the limit of a   0, ( )h k converges to a 

uniform distribution. With this function, the solution of Eq. S7 is 
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(The integral in Eq. S7 was performed from 0 to 
b

a
 in this case because, above this upper limit, 

( )h k  becomes negative). The solution Eq. S9 converges to 
2

1
( )N 


 , if 

a

b
  . Therefore, the 

message is the same as above. If 
a

b
 is small (compared to ), we will observe a power-law decay 

with the exponent of 2 over a wide temporal range. As 
a

b
 gets larger, the beginning part of the 

curve will deviate from, but the tail of the curve will exhibit a power-law decay with the 

exponent of 2. Therefore, the power-law decay with the exponent of 2 can emerge in long 

time regime even when the distribution of k is not uniform.    

 

Indeed, in our experiments, we observed the power-law in the temporal region greater than 100 

mins (Fig. 2). In fact, while power-law distribution is a widespread feature in many stochastic 

processes, observed in physics, ecology, earth sciences and social sciences, these empirical 

distributions typically exhibit a power-law decay only in the tail 11. Our analysis above could 

provide one mechanism of why this is the case. 

 

But, that is not to say that all non-uniform functions of ( )h k generate the power-law of 2 in the 

tail. For example, if
1

( )h k
k

 , i.e., the density of cells diverges to infinity as k0, 
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 . If 

( ) exp( / )h k k k b   , a gamma distribution where the density of cells converges to zero as k0, 

the solution of Eq. S7 is 
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b
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
. In these cases, even in the long time regime, the 

power-law decay with the exponent of 2 will not emerge.  



We believe that it is beyond the scope of this work to identify the exact mathmatical condition 

for which the power-law decay with the exponent of 2 emerges. However, our analysis reveals 

that a uniform distribution of k is not absolutely needed to observe a power-law decay with the 

exponent of 2. 

 

Supplementary Table. The parameters of our model describing the time-dependent killing 

curve 

 

Parameter Empirical Best fit 

k 0.063 min-1 0.105 min-1 

 -2.1 -2 

 102 min 100 min 

0 93 min 47 min 

A1 0.062 min-1 0.10211 min-1 

A2 2.4 min1.1 1.6219 min 

 

Our mathematical model for the time-dependent killing curve is given by Eq. (1-3) in the main 

text. The parameters of this model were first estimated by analyzing the empirical data (the left 

column; see the main text for details). We then determined the goodness of the fit with these 

parameters by using a logarithmic least squares formula  
11

2

10 data 10 model

1

log ( ) log ( )
n

i i

i

S g t g t




  , where 

n represents the data points in Fig. 1 or 3 (S = 3.26 × 10-1). We then varied the parameter values 

and found the values minimizing S (the right column, S = 3.03 × 10-2).  
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